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Abstract We review the main mechanisms for the formation of regular spatial struc-
tures (Turing patterns) and phase fronts in photonics and chemistry driven by either
diffraction or diffusion. We first demonstrate that the so-called ‘off-resonance’ mech-
anism leading to regular patterns in photonics is a Turing instability. We then show
that negative feedback techniques for the control of photonic patterns based on Fourier
transforms can be extended and applied to chemical experiments. The dynamics of
phase fronts leading to locked lines and spots are also presented to outline analogies
and differences in the study of complex systems in these two scientific disciplines.

Keywords Photonics · Chemistry · Turing patterns · Control · Phase fronts ·
Localized states · Spots

1 Introduction

Since the pioneering work of Alan Turing on chemical morphogenesis [1], it has
become clear that two species diffusing at different rates and competing with each other
within the same environment can spontaneously break the translational invariance (dis-
cretely) leading to the formation of regular (and irregular) spatial patterns. Although
the Turing instability can be studied in linearized systems (see [2] and Sect. 2), nonlin-
earity is necessary to saturate the growth of the unstable mode of the pattern. Above
the Turing instability a variety of geometrical structures (stripes, squares, rhomboids,
hexagons, honeycombs, etc.) can form in a 2D space, their relative stability depending
on the details of the given equations and nonlinear terms. The simultaneous presence
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of several steady states is an intrinsic evidence of nonlinearity. Here we present the
formation and control of regular (the spatially periodic patterns mentioned above),
irregular and localized spatio-temporal structures in photonic and chemical systems
and discuss analogies and differences between these two scientific disciplines.

The paper is organized as follows. In Sect. 2 we review Turing instabilities leading
to pattern formation in the presence of diffusion (diffraction), the main mechanism
for spatial coupling in chemistry (photonics). We demonstrate, in Sect. 3, that the
so-called “off-resonance” mechanism typical of the formation of patterns in certain
photonic systems driven by diffraction is a Turing process; there is a single universal-
ity class that encompasses reaction–diffusion and off-resonance instabilities leading
to Turing patterns in chemistry and photonics. Negative feedback techniques based
on Fourier filtering and used to control regular and turbulent spatial structures are
reviewed in Sect. 4. A great deal of theoretical and experimental techniques developed
in photonics [3] can be applied and profitably exported to control Turing patterns in
chemical systems. Section 5 is instead devoted to the formation and motion of phase
fronts in systems that appear in chemistry and photonics and that are characterized by
a nonconserved order parameter. In particular we discuss the locking mechanism of
phase fronts that leads to stable lines and spots in 2D. Conclusions and the prospec-
tive of a closer collaboration between chemists and photonic physicists in the area of
spatio-temporal structures are presented in Sect. 6.

2 Turing instabilities and pattern formation in chemistry

In his seminal paper on chemical morphogenesis in 1952, Alan Turing showed that the
translational invariance of a homogenous solution can spontaneously break in systems
with competing species (an activator and an inhibitor) with separate diffusion rates
[1]. An excellent review and expansion of Turing’s work is provided in [4]. Here we
use a simplified ‘linearized’ model of the Turing instability in 1D as discussed in [2]:

∂tR = αR − βI + D1∂
2
x R

∂tI = γ R − δI + D2∂
2
x I (2.1)

where the parameters α, β, γ , δ and the diffusion rates D1 and D2 are real and positive
quantities. Since R (I) displays linear growth (decay), it is identified as the activator
(inhibitor) variable of the two diffusing species. The homogeneous solution R = I = 0
is unstable to a spatially modulated perturbation of wave-vector kc = 2π/�c with
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Fig. 1 Possible patterns above the Turing instability: stripes, hexagons, honeycombs and squares

Since there are no nonlinear terms in Eq. 2.1, the amplitude of the Turing pattern (i.e.
a spatially periodic solution with wavelength �c) grows indefinitely. The main role
of the nonlinear terms is in fact to counterbalance such linear growth via saturation
(see [2,4]). In 2D the Turing instability does not prescribe a given geometry provided
that the spatial periodicity is �c = 2π/kc. Several geometries can tile the 2D plane:
stripes, squares, rhomboids, hexagons, honeycombs, etc. (see Fig. 1).

The saturating nonlinear terms do not affect the simultaneous existence of the sep-
arate geometries but only their relative stability. We will see in Sect. 4 how this fact
can be used to our advantage in devising effective and experimentally feasible control
methods for pattern formation. We can now summarize the necessary features of an
instability leading to Turing patterns as follows [4]:

(a) a clear activator-inhibitor linear dynamics and
(b) specific conditions on the spatial coupling mechanism allowing or forbidding

pattern formation.

Clear-cut experimental demonstrations of the formation of stationary Turing pat-
terns in chemical reactions have been realized in the early nineties in Bordeaux (France)
by the group of de Kepper [5] and in Austin (TX, USA) by the group of Swinney [6]
using a Chlorite and Iodide reaction with Malonic Acid (CIMA). Transitions from the
homogeneous to either a hexagonal or a striped structure have been observed when
decreasing the temperature (see Fig. 2). Turing instabilities in other chemical systems,

Fig. 2 Turing patterns in the CIMA reaction obtained from a homogeneous state upon decreasing the
temperature [6]. Hexagons are observed first and then stripes. Courtesy of H.L. Swinney
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such as, for example, the Ostwald ripening [7], have also been demonstrated, with
experimental evidence dating to as early as 1973 [8]. Turing patterns in the Belosuov-
Zhabotinsky (BZ) reaction, the prototype of reaction–diffusion systems in chemistry,
have also been observed in a water-in-oil aerosol OT micro-emulsion (BZ-AOT) [9].
A detailed history of Turing instabilities and structures in chemistry is however beyond
the scope of this paper.

3 Turing instabilities and pattern formation in photonics

The main mechanism of spatial coupling for pattern formation in photonic systems
is diffraction and not diffusion. To understand the origin and the mathematical treat-
ment of diffraction, we consider the Maxwell equations for the propagation of light
(electromagnetic waves) in a nonmagnetic medium with no free currents:

∇ × Ẽ = −∂B̃
∂t

∇ × B̃ = 1

µ0

∂D̃
∂t

∇ · D̃ = 0 ∇ · B̃ = 0 D̃ = ε0Ẽ + P̃ (3.1)

where Ẽ, B̃, D̃, P̃ are the (real) electric, magnetic, material and displacement (or
polarization) fields, ε0 and µ0 are the electrical permittivity and the magnetic perme-
ability, respectively, and such that c = (ε0µ0)

−1/2 is the speed of light in a vacuum.
All responses and properties of the material are contained within the polarization field.
If we want to merge Maxwell’s equations into a single partial differential equation it
is useful to take the curl of the curl of the electric field vector and to use the vector
calculus equality

∇ × (∇ × Ẽ) = ∇(∇ · Ẽ) − ∇2Ẽ, (3.2)

where the first term on the l.h.s is the gradient of the divergence of the electric field,
while the second is the Laplacian operator in 3D. The latter is due to diffraction
and describes the fact that each point on the wave front of an electromagnetic wave
becomes a source of a 3D spherical wave. Diffraction was first studied theoretically
by C. Huygens and later by A. Fresnel and J. Fraunhofer.

One can now take advantage of the strong directionality of laser beams used in
modern photonic devices and rewrite the electric and polarization fields as slowly
varying (in t and z) complex amplitudes multiplied by carriers at the optical frequency
ω0 and wave-vector kz :

Ẽ = E(t,x,y) exp[i(kzz − ω0t)] + complex conjugate

P̃ = P(t,x,y) exp[i(kzz − ω0t)] + complex conjugate

where x and y are the so-called ‘transverse’ coordinates since they are perpendicular
to the direction of the propagation of light z. By considering a single direction of
polarization (i.e. linearly polarized light) the vector notation may be dropped and,
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using the paraxial and the slowly varying approximations, a single Maxwell equation
can be obtained:

∂τ E = ia (µ0ω
2
0P + ∇2E) = iaµ0ω

2
0P + ia(∂2

x + ∂2
y )E (3.3)

where i is the square root of −1, a = c/(2kz) and τ = z − ct. This equation (or
several of them in the case of interacting fields of different frequencies) is, in general,
coupled to differential equations that describe the polarization field inside the material
and provided with boundary and propagation conditions that describe optical elements
such as mirrors, waveguides, apertures, dispersion compensators, etc.

Further approximations are feasible (see in particular the mean field limit for cav-
ity-based photonic devices) but the structure of Eq. 3.3 with respect to diffraction (the
Laplacian) remains unchanged. We note here that the main differences with respect to
reaction–diffusion systems such as the Turing model of Sect. 2, are that the field ampli-
tude E is complex and the diffractive spatial coupling is multiplied by the imaginary
number i. The relevance of these considerations will be seen later when demonstrating
that ‘off-resonance’ photonic patterns are Turing structures.

Early links between Turing and optical patterns were made in a seminal paper
by Lugiato and Lefever [10]. A clear activator-inhibitor dynamics, however, was not
established. We now show that the latter is possible for photonic systems display-
ing the so called ‘off-resonance’ mechanism for the formation of stationary patterns.
‘Off-resonance’ pattern formation corresponds to the generation of periodic spatial
structures whose spatial modulation is inversely proportional to the square root of the
detuning between the material and cavity resonances. As an example of a photonic
device that displays ‘off-resonance’ pattern formation, we consider the Degenerate
Optical Parametric Oscillator (DOPO) [11] in the specific configuration of a nonre-
sonated pump field. We consider one spatial transverse dimension for simplicity and
for an effective comparison with the models of Sect. 2. The results, however, do not
change in the 2D case of a transverse plane (x,y). The final equation for the signal field
E has the form of a Parametrically Forced Ginzburg-Landau (PFGL) equation [12]:

∂τ E = Q E∗ − (1 + i�)E − E|E|2 + ia ∂2
x E, (3.4)

where * represents the complex conjugate operation, Q is the real amplitude of the
input pump and � is the detuning between the signal frequency and the closest cavity
mode. By introducing the real (R) and imaginary (I) part of the signal field E, Eq. 3.4
becomes

∂tR = (Q − 1)R + �I − a ∂2
x I − R(R2 + I2)

∂tI = −�R − (1 + Q)I + a ∂2
x R − I(R2 + I2). (3.5)

The nonlinear terms have a purely saturating role for both variables R and I. In order
to characterize the linear onset of the instability, we neglect them (|R|, |I| << 1).
When setting the diffraction coefficient to zero (a = 0), the linear term structure of Eq.
3.5 exactly reproduces that of Eq. 2.1 with zero diffusion rates, under the identifica-
tion of α = Q − 1, β = γ = −�, δ = Q + 1. In the DOPO system, then, the real
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(imaginary) part of the complex electric field plays the role of the activator (inhibitor).
This is condition (a) of the Turing instability as established in Sec. 2. It is no surprise
that a second photonic system considered here in Sect. 4 (see Eq. 4.3 for a saturable
absorber) and capable of producing Turing structures, leads to exactly the same set
of linearized equations for an activator and inhibitor dynamics. Note that diffraction
exchanges the spatial derivatives between the activator and inhibitor. Since we want to
find out if DOPO spatial periodic structures belong to the same class of universality of
Turing patterns, we study Eq. 3.5 with no nonlinear terms and with generic diffraction
coefficients a1 and a2:

∂tR = αR − βI − a1 ∂2
x I

∂tI = γ R − δI + a2 ∂2
x R (3.6)

Following the method described in Ref. [4], the linear stability analysis of the homog-
enous state gives:

λ2 + λ(δ − α) + h(k2) = 0

h(k2) = a1a2k4 − k2(a1γ + a2β) + γβ − δα (3.7)

where λ are the stability eigenvalues. It is easy to find that the wave-vector k corre-
sponding to the minimum stability value is

k2
c =

(
2π

�

)2

= 1

2

[
β

a1
+ γ

a2

]
. (3.8)

Pattern formation is certainly inhibited when both a1 and a2 are negative. The pres-
ence of a region in the (a1, a2) plane where pattern formation is forbidden satisfies
condition (b) of the Turing instability as described in Sect. 2. In the specific case of the
DOPO, a = a1 = a2 and β = γ = −�, resulting in k2

c = −�/a which is the typical
condition of ‘off-resonance’ pattern formation (we recall that � is the cavity-medium
detuning). We can then conclude that the so-called ‘off-resonance’ mechanism leading
to pattern formation in DOPO and saturable absorbers is a Turing instability and that
the stationary and spatially periodic structures observed in these photonic systems are
Turing patterns. We note that an attempt to explain the relationship between optical
and Turing patterns in OPO was discussed in Ref. [13]. We have extended the analogy
(equivalence) to a single complex equation such as the PFGL model.

Important experiments on spatial structures in photonics originated in the late 1980s
with the pioneering work of Giusfredi et al. [14] using a curved feedback mirror and
Grynberg et al. [15] using pulsed counter-propagating beams, both in sodium vapours.
Since then, clear-cut hexagonal patterns breaking the translational invariance have
been observed in a multiplicity of photonic experiments using alkali atom [16,17],
photorefractive [18] and liquid crystal [19,20] media. Many of these experiments
have been based on the so-called “single-feedback-mirror” configuration originally
studied theoretically by Firth and D’Alessandro at Strathclyde [21]. Such a set-up is
presented schematically in Fig. 3. A laser beam passes through a nonlinear medium
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Fig. 3 Single mirror feedback configuration used for the formation of photonic patterns in [16,22]

Fig. 4 Spatially periodic stationary structures in photonics: hexagons, rolls and honeycombs. The experi-
ment comprises of a sodium cell and a single mirror feedback (see Ref. [16,22]). Courtesy of T. Ackemann

and is reflected by a single mirror back into the cell. Diffraction takes place mainly
during free propagation from the cell to the mirror and back [21].

By using a single-mirror-feedback configuration with sodium vapours hexagonal,
stripe and honeycomb structures (see Fig. 4) have been observed experimentally. The
absence of a cavity makes the analysis far too complicated to establish an equivalence
of these structures to Turing patterns. For this reason we label them ‘photonic pat-
terns’. Figure 4 clearly shows that when dealing with stationary patterns, photonics
offers the possibility of performing ‘dry-hydrodynamics’ or ‘non-smelling chemistry’.

4 Negative feedback control of Turing patterns

It was James Clerk Maxwell, the genius of Scottish mathematical physics, who estab-
lished the theory of control systems on a firm basis of differential equations in his
seminal paper “On governors” in 1868 [23]. Maxwell’s work analysed the stability
of James Watt’s fly-ball governor that tried to control the speed of a steam engine. It
also contained the embryonic idea of Negative Feedback Control (NFC) where part
of a system’s output is inverted and fed into the system’s input to discourage certain
unwanted features and produce a stable desired output. NFC led to the invention of
the thermostat in 1885.

In 1996 at Strathclyde we developed a negative feedback scheme for the control of
Turing patterns in photonics [24]. One important difference between photonics and
chemistry is that the time scale for the formation of regular spatial structures varies
from microseconds to several seconds. For practical applications, a control method
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Fig. 5 Turing patterns in
Fourier space. The spots are on
the circle of radius kc, the
unstable wave-vector of the
Turing instability. Different
patterns have a different number
and geometrical arrangement of
spots. Patterns with different
orientations are obtained by
solid-body rotation of the spots
around the centre k = 0

in photonics has to be much faster than that in chemical experiments. For this reason
we focused on feedback techniques that employed lenses, filters and optical elements
to achieve control within photonic time scales. We will see towards the end of this
section that the same methods can be applied to slower forming Turing structures such
as those observed in chemical reactions, by using electronically calculated negative
feedbacks.

An important obstacle in controlling Turing patterns is that they are spatially
extended and, in principle, one would need 2D arrays of fast detectors to evaluate
the appropriate feedback signal. Turing patterns have, however, a very compact repre-
sentation in Fourier space. By making reference to Fig. 5, a stripe pattern of wavelength
�c = 2π/kc is transformed in Fourier space into two points, say k1, k5. Analogously,
a square (hexagonal) pattern is transformed in Fourier space into four (six) points
k1, k3, k5, k7 (k2, k3, k4, k6, k7, k8). All these Fourier representations can rotate as a
solid body on a circle of radius kc depending on the orientation of the pattern in space.

For completeness, we note that hexagons (H+) and honeycombs (H−) differ from
each other in the condition imposed on their phases. These conditions are, respectively,

φ2 + φ4 + φ7 = 2nπ

φ2 + φ4 + φ7 = (2n + 1)π (4.1)

Finally, the homogeneous solution (that is unstable above the Turing instability) is a
single spot at the centre of the Fourier space (corresponding to k = 0). Note that finite
size effects broaden the Fourier spots but do not change their position. The simulta-
neous existence of several stationary patterns of different geometries above a Turing
instability (corresponding to separate fixed points in a global phase space) requires
nonlinearity that, in turn, rules the pattern stability. It is the aim of this section to
describe a control method that acts on the relative stability of the different patterns
without however changing their shape and geometry.
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Fig. 6 The scheme for the NFC of Turing patterns in Fourier space

Fourier space is the optimal place where to implement control techniques to effec-
tively operate on the stability of the Turing and photonic structures [3,24,25]. The idea
behind our control method is to discourage spatial structures that are different from
that of a target state through an appropriate negative feedback. The latter is achieved
in the following way (see Fig. 6). A small part of the laser output is Fourier trans-
formed, filtered in Fourier space by removing the Fourier components of the target
state, inversely Fourier transformed and then added “negatively” to the input of the
system.

For clarity, we make reference to the dynamical equation describing an optical
absorber consisting of two-level atoms in a cavity with two transverse dimensions
[26,27]:

∂tE = EI − (1 + i�)E − 2C

1 + |E|2 E + ia∇2E, (4.2)

where � is the cavity-medium detuning, C the coefficient of linear absorption of the
medium and EI the input pump field. We first show that (4.2) displays Turing patterns
via an off-resonance mechanism and find the appropriate threshold. By introducing
the normalized field A through E = ES(1+A), where ES is the stationary homogeneous
solution of (4.2), Eq. 4.2 becomes:

∂tA = 2C

1 + I
− (1 + i�)A − 2C(1 + A)

1 + I(1 + A)(1 + A∗)
+ ia∇2A, (4.3)

where I = E2
S. In the limit of |A|<<1, (4.3) is linearized to:

∂tA = (BI)A∗ − (1 + B + i�)A + ia∇2A, (4.4)

where B = 2C/(1+I)2 . Separating the field A into its real and imaginary parts A = R+iJ
we obtain:
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∂tR = [B(I − 1) − 1]R + �J − a ∇2J

∂tJ = −�R − [1 + B(1 + I)]J + a ∇2R. (4.5)

These equations are nothing else than those of the activator-inhibitor model seen in the
section 3 and reveal that the homogeneous steady state undergoes a Turing instability
for

2C >
(1 + I)2

I − 1
, (4.6)

leading to patterns at a critical wave-vector k2
c = −�/a. We note that a more sophisti-

cated nonlinear analysis shows that the imaginary part J is slaved to the real part R so
that the latter first grows linearly like (4.5) and then saturates the pattern via suitable
nonlinear terms [27]. The relative stability of different Turing patterns is ruled by the
nonlinear terms that have been neglected in deriving Eq. 4.4.

Figure 6 is the optical implementation of the control technique for the saturable
absorber case [24]. One advantage of photonics with respect to chemistry and/or
hydrodynamics is that the direct and inverse Fourier transforms can be implemented
experimentally by the simple use of lenses. The control signal is given by

f(x,y) = F−1UF µE, (4.7)

where F (F−1) is the direct (inverse) Fourier transform, U is the filtering operation,
and µ is a real parameter smaller than 1 and describing the magnitude of the control
signal with respect to the output field E of Eq. 4.2. The control signal is then added
“negatively” (optically through destructive interference) to the input field in Eq. 4.2,
i.e.

EI(x,y) = E0I[1 − f(x,y)]. (4.8)

Thus, the control increases the losses (dissipations) of every spatial component that is
not contained in the target structure. In these terms, the control of Turing patterns with
Fourier filtering is a real NFC technique. We also note that once the target pattern is
attained, the feedback signal vanishes since the Fourier filter removes it entirely. This
means that the controlled structure is a true solution of the system without feedback
[24]. If such solution is unstable to other patterns, perturbations are expected to grow
but their action is cancelled by the feedback signal and the system is pushed back
to the ‘unstable’ state. This point was clarified in Ref. [28] where techniques based
on the injection of stationary patterns are shown to be modification of unstable states
instead of control methods.

Figure 7 shows the sum of the amplitudes of the modes on the critical wave-vector
circle (see Fig. 5) versus the parameter I = |ES|2 for C = 4.4 and control feedback
strength µ = 0.05 [24]. Control of several Turing patterns as well as the homogeneous
solution by Fourier feedback is achieved in the saturable absorber system described
by Eq. 4.2. In Fig. 7 the dashed (solid) lines correspond to controlled unstable (stable)
stationary solutions. Since multi-stability is commonplace in systems forming Turing
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Fig. 7 Mode amplitudes of the pattern solutions versus the intensity of the stationary homogeneous state
I [24]. Solid (dashed) lines correspond to stable (unstable) solutions of Eq. 4.2

patterns, control of stable states means that our technique is capable of reaching the
(stable) target state starting from a different stable solution.

In the case of the control (stabilization) of homogeneous states, the Fourier filter is
simply a small dark disk centered on the optical axis. All components corresponding to
spatially changing structures are now subjected to increased losses due to the feedback
control signal. The Turing instability is then completely suppressed (see horizontal
line in Fig. 7) [24].

Turing patterns with given geometries are now available for the operator’s choice
[3]. A stripe, square and hexagonal filter can select, control and track the desired
geometries. The idea of suppressing instabilities seen for the homogeneous case can
now be extended to the patterned solutions when in the presence of spatio-temporal
disorder. Application of the Fourier NFC methods to suppress turbulent behavior in
photonic systems has been suggested and theoretically demonstrated in [25].

Photonic experiments : The Fourier negative feedback method to control photonic
patterns has been successfully applied to a plethora of experimental realizations since
the late 1990s [3]. These range from photorefractive [29], liquid crystal [30–32] and
single-mirror vapour cells [33] systems. In particular in [31] both the control of pho-
tonic patterns (see Fig. 8) and the elimination of spatio-temporal turbulence have been
achieved with the technique explained above.

Relevance to chemistry : Control of spatio-temporal structures in chemistry has been
an important topic of research for some years (see the review article [34] and refer-
ences therein). Because of the importance and relevance of waves, fronts and spirals,
control of spatio-temporal structures in chemistry has focused on oscillatory and excit-
able systems more than on stationary Turing structures [34]. For example, unstable
waves have been stabilized in a photosensitive BZ reaction by a negative feedback sig-
nal obtained by imaging the concentration of a reagent and using local and averaged
light intensities of the image [35]. Fourier components have been used in chemistry

123



106 J Math Chem (2009) 45:95–112

Fig. 8 Experimental control of photonic patterns [31]. Stabilized output structures (homogeneous, stripes,
squares and hexagons) (top) and their Fourier transforms (bottom). Courtesy of E. Benkler

to control spatial structures in oxidation of CO on Pt(1 1 0) by using images of the
concentrations and the modulation of the CO partial pressure in the reactor [36]. The
Fourier transforms used in the evaluation of the control signal have been performed
on computers via Fast Fourier Transform (FFT) algorithms [36].

The time scales in chemical experiments on stationary Turing patterns are far slower
that those of photonics [5,6,9]. This simple fact removes the need for optical implemen-
tation of the Fourier transform. Implementation of the Fourier NFC method developed
in Refs. [24,25] to chemical experiments displaying stationary Turing patterns, such
as the CIMA [5,6] and the BZ-AOT [9], can be broken into these four steps:

(1) electronic detection of the optical images of the concentrations,
(2) computer evaluation of the Fourier transform of the optical image via FFT

methods,
(3) filtering of the target structure and inverse Fourier transform on a computer,
(4) application of the obtained signal to control parameters of the reaction (such as

reagent pressures, temperature, illumination for photosensitive cases, etc.) as a
negative feedback.

5 Phase fronts, locked lines and locked spots

The previous sections clearly showed that several features and control methods of
Turing structures are shared between photonic and chemical systems although the
spatial coupling mechanisms, i.e. diffraction and diffusion, are intrinsically different.
In this last section, we present a ‘diffractive’ effect on phase fronts that leads to local-
ized spots that may have interest and possible extension in chemical systems.

Stationary and moving fronts separating two different phases have been at the cen-
tre of research in spatio-temporal structures in nonequilibrium systems for a long time
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[37,38]. In systems with nonconserved order parameters (such as chemical concentra-
tions), phase separation coarsens with a t1/2 power law [39] and has been studied via
Monte-Carlo simulations [37], coupled map systems [40], and integration of partial
differential equations [12,38]. One difficulty in the experimental observation of the
phase separation, and common to many branches of physics, is to maintain full equiv-
alence (in energetic terms) of the two phases in order to avoid nucleation phenomena.
In photonics, the DOPO offers the possibility of two perfectly equivalent states due
to twin-photon generation in parametric down conversion (the opposite of second
harmonic generation). In a DOPO, a pump field at frequency ω0 gives rise in an opti-
cal cavity to a signal at frequency ω1 = ω0/2 by down-conversion. The dynamical
equations are [11,12]:

∂tA0 = �(−A0 + Q − A2
1) + ia∇2A0

∂tA1 = −(1 + i�)A1 + A0A∗
1 + 2ia∇2A1 (5.1)

where A0 and A1 are the pump and signal fields, � is the ratio between the photon
decay rates (i.e. mirror losses) at the two frequencies ω0 and ω1, Q > 0 is the (real)
amplitude of the input pump, � is the signal detuning and a is the diffraction coef-
ficient. In the case of no optical cavity for the pump field (� diverging to infinity),
Eq. 5.1 reduce to:

A0 = Q − A2
1

∂tA1 = QA∗
1 − (1 + i�)A1 − A1|A1|2 + 2ia∇2A1 (5.2)

The second equation in (5.2) is nothing else than the PFGL equation (3.4) discussed in
Sect. 3 as a prototype for the formation of Turing structures for � < 0. It is interesting
to note that the more general form of the PFGL equation with complex parameters in
front of every term [41], has played an important role in the description of resonantly
forced reaction–diffusion systems in chemistry [34,41–43] such as the light sensitive
BZ reaction [44]. Here we study the effect of the parameter � on the dynamics of
phase fronts in the resonant case of � = 0 [12].

For � = 0 Eqs. 5.1 and 5.2 admit three homogenous solutions:

A0,s = Q − A2
1,s

A1,s = 0, ±√
Q − 1 (5.3)

with the zero solution being stable for Q<1 and unstable otherwise, and the two-phase
solution existing and being stable for Q>1. The two-phase solutions are mirror images
of each other, differ by a phase π and have the same intensity |A1,s|2. In one transverse
dimension (∇2 → ∂2

x ), the PFGL equation (5.2) admits also the Ising (domain) wall
solution
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A1,w = ±√
Q − 1 tanh

[√
Q − 1

2
x

]
, (5.4)

that connects the two homogeneous phase solutions. For generic �, Eq. 5.1 are non-
variational and an explicit form of the Ising wall solution is not available (see also
below). Accurate numerical methods for the determination of stationary (and travel-
ling) spatial solutions have found the existence and stability of Ising walls (of more
complicated form than a simple hyperbolic tangent) for a wide range of � values and
Q>1 in Eq. 5.1 [12]. Ising domain walls in DOPO pass through zero and are symmetric
with respect to the (now unstable) zero solution. There is then a point of zero intensity
in the signal field in the middle of each Ising domain wall. When the pump field is
resonated (see Eq. 5.1), the field A0 not only presents a maximum where the signal
field is zero (see the first equation of (5.3)) but it also ‘diffracts’ through this small
aperture and develops oscillatory tails typical of Airy functions. These ‘diffractive’
oscillatory tails of the pump field affect, in turn, the shape of the Ising domain wall
(5.4) and the signal field develops oscillatory tails close to the homogeneous phases.
In the first panel of Fig. 9 oscillatory tails of two (interacting) Ising domain walls are
clearly visible. The presence of these oscillatory tails is a nontrivial spatial feature
since they are capable of stabilizing an entire family of localized states [12,45]. The
interaction force between two Ising walls with oscillatory tails is spatially modulated
with attractive (repulsive) locations where its minima (maxima) are located [45]. The
depth (height) of these minima (maxima) increases the shorter the distance between
the Ising domain walls. Figure 9 shows six of these locked localized states for the
DOPO system (5.1) with � = 1 and Q = 2 [12]. All these solutions are stationary,
stable and coexist with their counterpart obtained by reflection around the horizontal
x-axis (top-bottom exchange).

The solutions of Fig. 9 correspond to locked and parallel domain walls in two trans-
verse dimensions. In 2D it is natural to consider the behaviour of one phase surrounded
by the other and the phenomenon of phase separation. Figure 10 shows the long-term
evolution of the signal intensity |A1|2 in simulations of Eq. 5.1 for � = 1 and Q = 1.4
(left panel) and Q = 2.5 (right panel). The black lines are the core of Ising walls where
the signal intensity is zero.

We have verified that the dynamics of the phase domains follows the Allen-Cahn
coarsening when the asymptotic state of the dynamics is exactly one or the other of
the two phases (see the left panel of Fig. 10) by evaluating the structure factor S(K,t)
where K is the transverse wave-vector, i.e. the Fourier transform of the two-point cor-
relation function. The logarithm of S(K,t)/t1/2 is plotted in Fig. 11 versus kt1/2 at time
intervals of 30 from t = 30 to 300. Clearly the dynamics of the phase domains of (5.1)
and (5.2) is ruled by local curvature effects with a t1/2 growth-law [12].

The long-term dynamics and final state are modified when the input pump ampli-
tude Q is increased. Above the critical value of Q = 2.21, locked domain walls of
circular shape appear (see the right panel of Fig. 10). Domains of one phase embedded
in the other no longer shrink to zero but collapse onto circular spots whose stability is
due to the self-locking of the inner oscillatory tail of the domain wall. These circular
stable spots, discovered in Ref. [46] and also known as ‘Dark Ring Cavity Solitons’,
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Fig. 9 Stable locked Ising walls in DOPO (5.1) in one transverse dimension for � = 1 and Q = 2 [12]

Fig. 10 Snapshots of the time evolution of the signal intensity |A2
1 at t = 1500 from Eq. 5.1 with � = 1,

Q = 1.4 (left panel) and Q = 2.5 (right panel)

are the 2D counterpart of the localized locked Ising walls described in the 1D system.
The dark ring of these structures is what remains of the circular Ising domain wall
separating the two phases. Since localized states with circular symmetry have a zero
eigenvalue (marginal stability) for translational motion [47], it is possible to move
and pin these structures to maxima and minima of appropriate spatial modulations
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Fig. 11 The logarithm of the normalized structure factor versus kt1/2 at time intervals of 30 from t = 30 to
t = 300 from Eq. 5.1 with � = 1 and Q = 1.4 [12]. This figure is ‘totally’ dedicated to Ray Kapral

of the input pump beam [48]. Arrays of circular locked spots can thus be arranged
and manipulated by the operator at will by using background modulations [48]. This
procedure represents a first step in the ‘control’ of fronts separating two phases.

Recent experiments performed with a cell of optically pumped sodium vapour in
front of a single feedback mirror as described in Sect. 3 have used polarization domains
as equivalent but separate phases [49]. The Allen-Cahn t1/2-growth law and circular
locked spots have been experimentally verified [49] in close agreement with the theory
and simulations described here.

Complex dynamics of the PFGL equation have been used to describe reaction–dif-
fusion systems in chemistry with several interacting species [41–43]. The addition or
inclusion of a further component can, in principle, have the ‘diffractive’ effect that
leads to oscillatory tails of the phase fronts in resonantly forced chemical reactions.
We then expect the locking phenomena of fronts that occur in photonics to extend to
chemical and biological systems. Again, diffraction and diffusion intertwine as their
common mathematical description through the Laplacian operator has long suggested.

6 Conclusions

Photonics and chemistry are separate fields of scientific investigation and yet share
a great deal of common features when it comes to spatio-temporal structures in the
presence of nonlinearity. We hope to have demonstrated that the universality of Turing
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patterns and phase fronts dynamics extends across these two disciplines in a deeper
way than previously thought.

Control of Turing structures via Fourier methods and locked phase fronts are just
two of the photonic features that can be extended to chemical systems. Diffractive
effects in multi-component reaction–diffusion systems as well as diffusive effects in
multi-field photonic devices allow for a fruitful exchange of scientific ideas across the
separation of the research fields. In particular the study of universal models such as
the periodically forced complex Ginzburg-Landau and the Swift-Hohenberg equations
can provide useful insights for both disciplines.
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